Skip to main content
Person looking at digital rendering
Airplane in hanger
Visual representation of manufacturing machinery for smart manufacturing.

借助智能制造解决方案变革您的运营

Altair 先进的软件和基于云的解决方案无缝集成了工业 4.0 背后的关键技术 - 包括工业物联网 (IIoT) - 以支持智能制造。 通过整合这些尖端技术,Altair 可助力组织过渡到完全互联、自动化和高效的智能制造流程。

我们解决现代制造业中的关键挑战,从处理大量实时数据流到提高生产灵活性并最大限度地减少停机时间。 借助我们的仿真和数据科学工具,制造商可以创建其流程和机械的数字孪生,从而优化运营并全面提高效率。

借助高性能计算 (HPC) 和人工智能 (AI),我们提供推动生产每个阶段创新所需的计算能力和智能洞察力。 从先进的数据分析用于预测性维护,到通过 AI 驱动的决策减少浪费并提高吞吐量,我们的解决方案推动数字化转型和智能制造 - 不仅在您的生产设施中,还覆盖整个供应链。

联系我们

Altair 在2025年 Gartner® Magic Quadrant™(魔力象限)报告中再次被评为领导者

数据科学与机器学习平台领域

下载查看完整报告
Advanced manufacturing setup of the packaging company

智能互联的工厂

Altair 能够助您部署边缘计算集群、训练和执行机器学习模型、实施复杂的应用程序业务逻辑、执行数据转换、可视化实时数据

5G 标准是许多 IIoT 应用的基础。 仿真设备、5G 天线以及它们运行的 5G 网络,有助于创造所需的通信性能。

我们提供数字化转型的基础模块,帮助您在数字化转型中快速发展、迅速扩大规模,并随着时间推移不断进行完善和提升。

A closeup of the manufacturing machine

工艺优化

制造仿真传统上应用于产品开发的后期阶段,但 Altair 率先采用仿真驱动的制造设计 (SDfM),通过快速、准确的求解器和直观界面将制造仿真引入概念设计的最早阶段。 这一创新可为概念设计提供更多的制造选项和约束,使工程师能够更好地理解设计,而不是纯粹依赖机构专业知识。

了解更多:

A person analyzing the data on the computer

设备更智能

工业机械的复杂程度与日俱增,这就需要在产品系列开发和客户项目实施中进行积极的技术风险管理。 Altair 集成化产品和过程仿真工具可从不同角度全面观察整个情况,以确保更早实现完美运行生产。

机器学习使设备具有自我优化的能力。机器制造商便能够实现自动路径校正,改变制造容差差异或系统机械老化。

ABI RESEARCH

Altair 在制造业数据分析领域排名第一

全球领先的技术情报公司 ABI Research 在其 2023 年制造业数据分析排名中将 Altair 评为总体领导者、顶级创新者和顶级实施者。

下载报告
A robot building the car and a person processing the data

制造分析

工业物联网 (IIoT) 正可增强连接性,生成数据并将潜能发挥到极致。 Altair 知道如何充分运用数据来推动创新、推动新机遇并加速您的智能制造转型。

了解更多
One of the robot's arms

数字孪生

数字孪生能够帮助企业优化性能,了解产品的使用寿命,确定执行预测性维护的时间和位置,以及了解如何延长产品的剩余使用寿命。 我们采用开放、灵活的综合性方法,让您能够根据自身情况实现数字化转型。

探索发现
A closeup of a bicycle tyre

增材制造

如今,许多组织正在采用新方法来设计和优化增材制造部件。 Altair 提供强大而全面的解决方案,使设计师能够释放增材制造的潜力,创造复杂的有机形状以满足功能要求,而无需处理传统制造方法的限制。

探索

工程和制造领域的 AI 新手?

入门指南

特色资源

Implement Effective Manufacturing Process Analytics

By extracting real value from their data, manufacturers can make accurate predictions about component life, replacement requirements, energy efficiency, utilization, and other factors that have direct impacts on production capacity, throughput, quality, sales, customer acceptance, and overall efficiency.

Low cost sensors and new wireless connectivity tools enable manufacturers to employ digital analytics more effectively than ever before. With the right tools, they can gather, cleanse, process, and visualize massive amounts of data from disparate sources that cover all phases of the product life cycle, from product design to warranty claims.

This guide explains some of the major challenges involved in applying data analytics to manufacturing processes and the benefits of developing optimized approaches to addressing those challenges.

eGuide
Generative Design Competitive Ranking by ABI Research

Generative Design Competitive Ranking by ABI Research

This study assesses and compares nine suppliers of generative design software to offer an unbiased assessment and ranking Only platforms with a dedicated market focus on industrial and manufacturing were considered.

This report sets out the market positioning of each profiled company leader, mainstream, and followers ABI Research developed this Competitive Assessment (to offer a comparative assessment and ranking of the following suppliers of generative design software Altair, Ansys, Autodesk, Dassault Systèmes Hexagon, nTopology ParaMatters PTC, and Siemens.

Altair was ranked Overall Leader, Top Innovator, and Top Implementer.

白皮书

Guide to Process Manufacturing

Any industry that produces bulk quantities of goods such as pharmaceuticals, food, chemicals, or cosmetics, is seeking to produce these products consistently while reducing cost factors like waste and down time. Due to the nature of process manufacturing, multiple ingredients are combined to be mixed, coated, or sorted, so understanding the behavior of these processes is of paramount importance for manufacturers. Through the use of simulation modeling and Smart Manufacturing principals, manufacturers are now able to optimize these processes, leading to greater productivity and profitability.

eGuide

Research Report: Simulation-Driven Design for Manufacturing (SDfM) Experiences

Product engineers are under consistent pressure to reduce the costs, improve the quality and increase the throughput of manufacturing processes. This fast-paced environment is not well suited for trial-and-error manufacturing engineering.

How are engineers responding to these challenges? Is simulation and simulation-driven design for manufacturing (SDfM) well established across the industry? When simulation is deployed, does it deliver on the promises of reducing costs while improving throughput and quality? And what are the barriers to the adoption of simulation during the early stages of product development?

In this 2021 survey report conducted by Engineering.com, we discuss those questions and discover:

  • Top design priorities
  • Top benefits of SDfM
  • Top barriers to expanding and adopting SDfM
  • Risks to staying competitive in the market
技术文档
查看所有资源

保持联系

我们能提供什么帮助?

期待您的联系。 您可以通过以下方式联系我们。

联系我们
careers-cta-pic