Skip to main content

医疗保健和生命科学

Altair 助力制药、生物技术和医疗器械企业在更短的时间内开发和生产出更好的产品,改善患者的治疗效果并降低成本。 我们的 仿真, 数据分析, 人工智能(AI), 以及 高性能计算(HPC) 解决方案帮助医疗行业团队理解复杂问题,实现医学突破,并在确保疗效和安全性的同时,将最新进展更快地推向市场。

医疗保健和生命科学

Altair 助力制药、生物技术和医疗器械企业在更短的时间内开发和生产出更好的产品,改善患者的治疗效果并降低成本。 我们的 仿真, 数据分析, 人工智能(AI), 以及 高性能计算(HPC) 解决方案帮助医疗行业团队理解复杂问题,实现医学突破,并在确保疗效和安全性的同时,将最新进展更快地推向市场。

医疗保健和生命科学

Altair 助力制药、生物技术和医疗器械企业在更短的时间内开发和生产出更好的产品,改善患者的治疗效果并降低成本。 我们的 仿真, 数据分析, 人工智能(AI), 以及 高性能计算(HPC) 解决方案帮助医疗行业团队理解复杂问题,实现医学突破,并在确保疗效和安全性的同时,将最新进展更快地推向市场。

A doctor visualizes patient safety data from a clinical trial and compares it with information stored in the FDA Adverse Event Reporting Systems (FAERS) to identify potential negative interactions.

加速药物发现、开发和制造

使用 Altair® RapidMiner® 平台构建 知识图谱 ,结合和分析以多种格式存储的数据 - 包括 SQL 数据库、大数据存储库和电子表格 - 以及非结构化来源,如药品标签、病例叙述、病史、期刊文章、研究论文和商业词汇,包括监管活动医学词典 (MedDRA)、WHODrug Global、EMA EudraVigilance 和 FDA 不良事件报告系统 (FAERS)。

创建 AI 模型,以简化患者招募流程,支持监管合规报告工作流,提高安全报告效率,改善研发和制造运营之间的数据交换,并使用真实世界数据创建合成对照组。 使用我们完全验证、灵活的替代 SAS 语言环境,作为统计计算环境 (SCE) 的组成部分,用于临床数据的分析和报告。

A 3-D visualization of a new medical device enables medical device designers and engineers to fully test modifications to existing designs before committing to physical prototypes.

设计和构建坚固、经济高效的医疗设备

使用 Altair® HyperWorks® 平台设计医疗和保健设备,以兼顾成本、重量、可制造性、可靠性和性能。 提供能够承受日常使用、消毒甚至误用的装置和设备。 使用我们的硅调试和数字仿真解决方案,确保首次准确的专用集成电路(ASIC)设计。 在设计过程的早期采用 多物理场 方法来优化组件和系统的结构、热、电和电磁性能及尺寸要求。

强生公司如何使用 Altair HPC 工具加速疫苗开发。

阅读案例
A data scientist compares medical data generated by a synthetic control arm with real world data collected during the clinical for a new cancer treatment using Altair machine learning software.

加快临床试验

临床试验对于药物和医疗器械开发至关重要,但也耗费大量金钱和时间。 客户使用 Altair 的 AI 和数据分析软件,通过识别合适的患者群体、预测结果和实时监控试验进展来优化试验设计。

面向医疗的增材制造 (AM)

仿真驱动设计指南

探讨如何使用仿真来设计复杂的 AM 方案,探索材料选择、优化结构以提高性能并确保设计可以高效打印。

下载指南

设计坚固耐用的植入物和假体

Altair 的解决方案使组织能够开发医疗产品,以实现强度、耐久性、组织相容性和患者舒适度。 这些工具可以对复杂的生物和骨科结构进行建模、分析和优化。 我们的优化技术通过仿真机械应力对骨骼生长和负载分布的影响,以防止植入物失败,同时我们的建模和可视化技术专门用于创建患者特定的假肢设计。

Altair 的 仿真驱动设计 方法提供了完善的用户体验,在一个环境中无缝集成几何创建、设计验证、优化和可制造性。 通过生成式设计、拓扑优化、运动仿真和强大的隐式建模,用户可以快速生成适合骨整合和血管化的复杂 3D 打印晶格结构。 集成的无网格求解器加速了医疗设备和患者特定植入物的分析,有助于评估复杂的晶格和小梁结构。 可定制的脚本使解决方案适应不同的设计挑战。 通过在仿真和设计之间建立闭环,Altair 赋能工程师创造卓越的植入物设计。

我们如何助您开发下一项医疗创新?

联系我们
A pharmaceutical analyst builds a knowledge graph connecting data from numerous sources, including the WHODrug Global database and clinical trial data, as the first step in building a generative AI model for diagnostic and pharmacovigilence applications.

让 AI 成为药物开发和个性化医疗不可或缺的一部分

制药研究人员使用生成式 AI,比传统方法更快、更经济地探索发现和开发突破性药物。 当医疗专业人员使用 AI 分析患者的基因组、识别生物标志物以及预测患者对药物的反应、代谢和受益方式时,AI 还在精准医疗设计和个性化医疗中发挥着重要作用。

A data systems engineer manages a large array of computers with high performance computing scheduling software to identify correlations between organic and organometallic compounds discovered in a new drug development process.

使用 HPC 扩展药物研发管线

客户借助 Altair® HPCWorks® 来优化复杂的高性能计算环境,并加速关键的医疗保健和生命科学研究。 无论是在本地、云端还是混合环境中,Altair 值得信赖的作业调度管理系统以及 HPC 管理控制、用户访问、精确定位 I/O 瓶颈等解决方案均能提供可扩展性和效率,从而降低药物开发成本并提高从初步分子研究到处理临床试验数据等每个阶段的成功可能性。

A manufacturing engineer examines an executive dashboard tracking supply chain issues and highlighting anomalies and outliers in a pharmaceutical manufacturing workflow.

优化制药供应链

使用 Altair 的 机器学习软件 预测潜在中断、确定替代供应商、最大限度地降低风险、优化库存水平并减少浪费。 AI 模型可以在 SAS、Python 或 R 中构建,或使用我们直观的可视化工作流设计器生成,以监控供应链每个步骤的数据,确保输入符合您的质量标准并防止损耗。 构建仪表板以实时监控订单、发货和供应商定价。 根据市场趋势、季节变化甚至社交媒体情绪预测需求,避免缺货和库存过剩。

A 3-D simulation of a large industrial powder coating machine used in manufacturing pill coatings for time-release pain medication.

改进药品生产流程

Altair 的离散元法 (DEM)解决方案,从辅料到药片及胶囊,仿真药品生产中使用颗粒材料的行为。 准确模拟粒子行为,以优化混合、涂层、造粒、料斗卸料和制片等关键制造工艺。 通过对流程性能和产品质量提供预测性见解,用户可以加速开发、降低成本并最大限度地减少物理测试。

Altair 的集成多物理场仿真和 AI 解决方案加速了制药开发和制造。 通过 模拟复杂的颗粒流体系统 并生成预测性 数字孪生的合成数据,优化工艺、降低成本并确保产品质量和合规性。

特色资源

Revolutionizing Oral Healthcare: Exploring the Fusion of Digital Twin Technology with Data Analytics and Altair Radioss

Presentation by Dr. Jingchao Sun, R&D Senior Director at iLittleMiracle as part of Altair's Future.Industry 2024 conference.

Nowadays, orthodontists need to utilize digital tools to develop appropriate treatment plans for patients. Under the existing traditional techniques, it is difficult to predict the forces within the oral cavity and can only observe the outcomes. Clearly, this imposes numerous constraints on orthodontists. iLittleMiracle(iLM), however, employs the Altair Radioss solver to offer biomechanical simulations for each kid's every treatment stage, enabling orthodontists to analyze and anticipate the forces within the oral cavity. Consequently, orthodontists can combine their clinical experience and choose more rational treatment plans. Building upon this foundation, RomuTech utilizes the Radioss simulation results as an effective training dataset for data analytics machine learning. By integrating the advantages of high precision and efficient predictability, iLM provides orthodontists with reliable, efficient, and visualized digital tools. This marks the first application of digital twin technology in the field of dentistry, addressing industry pain points and leading the way into a new era of digital delivery.

Future.Industry
Tracking Virus Variants with AI

Tracking Virus Variants with AI – Argonne National Laboratory Researchers Win Gordon Bell Special Prize

The COVID-19 pandemic has impacted the entire planet, and researchers continue to investigate its catalyst: the SARS-CoV-2 virus and its variants. Discovering variants of concern (VOCs) quickly can save lives by giving scientists time to develop effective vaccines and treatments — but existing variant-tracking methods can be slow. A team of researchers at Argonne National Laboratory, along with university and industry collaborators, tackled the problem of tracking virus variants by using artificial intelligence (AI). The powerful Polaris supercomputer at the Argonne Leadership Computing Facility (ALCF), which is enabling science in the runup to the Aurora exascale system, enabled the research with help from Cerebras' AI-hardware accelerator and NVIDIA's GPU-accelerated Selene system. Polaris is equipped with GPUs and with workload orchestration by Altair® PBS Professional®. The project team won the ACM's prestigious 2022 Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. The results the Argonne researchers and their collaborators have achieved paves the way for faster, more detailed insight into the virus mutation process, enabling scientists to act on emergent variants and develop ammunition to reduce severity and slow the spread, ultimately saving lives.

客户案例

Medtronic Reduces Medical Stent Stress by 71%

Medtronic designs and manufacturers medical devices used the world over. Traditionally, computer aided engineering (CAE) and virtual simulation were not fully utilized within the industry as the verification process for often microscopic components was too slow. When designing a new medical stent (an expandable mesh inserted into a patient's artery to keep it open) Medtronic wanted to improve the design and speed up the validation process. Altair ProductDesign worked closely with Medtronic’s own engineers to optimize the performance of the new stent.

客户案例

Digital Twins of Oral Solid Dose (OSD) Manufacturing Processes

The use of digital twins for virtual process optimization is a key component of the digital transformation strategy in the pharmaceutical industry, but their development and deployment require the combined use of a wide range of technologies such as physics-based simulation, machine learning, high-performance computing, real-time dashboarding and IoT. Altair is uniquely positioned to deliver an end-to-end solution in this context.

网络研讨会
查看更多资源

保持联系

我们能提供什么帮助?

期待您的联系。 您可以通过以下方式联系我们。

联系我们