
e-Mobility
提供面向大众的电动汽车不仅需要投入大量资金,而且这也是一项艰巨的工程。 随着 OEM、供应商和新兴汽车制造商举数十亿投资来开发创新型电动汽车,优化开发和生产流程,他们需要寻找一个战略合作伙伴来帮助实现愿景。 Altair 技术将会改变电动客车、越野车和自动驾驶汽车的设计方式,能够帮助他们加快产品开发、提高能效及优化集成系统性能。
可满足下一代汽车需求的可持续设计解决方案。
集成的系统级多学科多物理场解决方案使设计人员能够了解并优化当今电池电动汽车 (BEV) 复杂、互连的架构。
将电动汽车从小众市场拓展到大众市场。
随着 OEM 开始面向其主流客户生产 BEV 来解决续航能力、传动系统效率和充电时间等问题,设计在开发流程中变得更加重要。 为此需要针对更高系统电压,创新的冷却方案以及持续的轻量化进行快速研发。
加速您的电动汽车开发?
联系我们加快产品开发速度
BEV 产品开发:要使 BEV 开发周期与传统动力车辆项目的计划时间表保持一致,就需要对工程团队的结构和工具集进行更改。 仿真驱动设计流程可以减少重新设计和物理原型制造,加快从概念到设计的进程,从而能够解决这种特殊挑战。 Altair® e-Motor Director™ 是一个单一工作环境,专家可以提供以解决方案形式存储的最佳实践,用户可以将其拖放并连接到更复杂的工作流程中,让其做好自动执行的准备。
在预研阶段考虑轻量化,实现均衡设计:减少质量对于提高电池续航能力和电推进性能非常重要。 Altair Concept 1-2-3 设计流程使设计人员能够通过仿真了解车辆架构、制造流程、材料选择和平台策略,从而自信地创建和评估下一代创新架构。
执行设计研究,做出明智的电机选择:在概念阶段快速执行设计研究,进行可行性排序,根据结果做出更明智的下游电子推进决策。 可以使用 Altair® FluxMotor® 比较性能,选出最佳电机拓扑结构,同时考虑效率、温度、重量、紧凑性和成本等要求。

提高能效
车辆续航能力强:汽车越轻,加速和维持速度所需的电池电量就越少,充电后行驶的里程就越多。 生成式设计让工程师能够实现材料去除,并能提供所需的强度和刚度,确保安全性和舒适性。 功率需求越小,电池组尺寸和重量就越小,而电池组的尺寸和重量正是影响电动汽车重量的主要因素之一。
关于效率、冷却和噪声的详细设计:要想在性能、成本和重量之间达到平衡,设计人员可以通过多物理场仿真提高电动汽车的驾驶体验。 使用 Altair® Flux® 执行详细的电机电磁仿真,并使用 Altair CFD™ 执行磁热仿真,评估对流和辐射对效率损失的影响。 借助 Altair® OptiStruct®,可以了解电推进系统对声音质量和乘客体验的影响,而借助 Altair CFD,则可以了解风噪和路噪。
电动汽车面临的碰撞和安全挑战:电池组对于电动汽车的安全至关重要,因此,需要从车辆碰撞事故、道路碎片碰撞与冲击仿真深入洞察,并与车辆项目研发进度保持一致。 Altair 在车辆安全方面进行了大力投资,并与车辆电池研究领域的引领者开展合作,可高效、准确分析因短路而导致电池起火的机械故障。

设计未来的电动汽车
EV 性能优化:EV 子系统对周围系统的影响很大,可以借此优化车辆性能。 通过多学科方法,设计人员可以分析和优化复杂系统中的关键性能属性,实现最终设计平衡。
驱动和控制集成:Altair 基于模型的开发解决方案可利用仿真模型加速设计交付,并且能够就不同复杂程度的机电一体化系统提供支持。 可以根据车辆开发阶段在电机、功率转换器和控制策略设计中部署不同保真度的模型(从 0D 到 3D)。 您可以按顺序或同时对 1D 和 3D 仿真研究进行耦合,以通过专为提高设计效率而建立的代表性系统模型来评估产品性能。
V2X、ADAS 和自动驾驶汽车:电动汽车解决方案必须与周围系统建立连接并进行交互,并且不能干扰车载电气系统 (EMC/EMI)。 Altair® Feko® 高频电磁软件和波传播工具能够帮助车辆设计人员执行虚拟驾驶测试,进行专用短程通信 (DSRC) 或 5G 无线信号分析时考虑场景中的各种环境障碍物的影响。
特色资源

Guide to Using Altair RapidMiner to Estimate and Visualize Electric Vehicle Adoption
Data drives vital elements of our society, and the ability to capture, interpret, and leverage critical data is one of Altair's core differentiators. While Altair's data analytics tools are applied to complex problems involving manufacturing efficiency, product design, process automation, and securities trading, they're also useful in a variety of more common business intelligence applications, too.
Explore how machine learning drives EV adoption insights - click here.
An Altair team undertook a project utilizing Altair® Knowledge Studio® machine learning (ML) software and Altair® Panopticon™ data visualization tools to investigate a newsworthy topic of interest today: the adoption level of electric vehicles, including both BEVs and PHEVs, in the United States at the county level.
This guide explains the team's findings and the process they used to arrive at their conclusions.

E-motor Design using Multiphysics Optimization
Today, an e-motor cannot be developed just by looking at the motor as an isolated unit; tight requirements concerning the integration into both the complete electric or hybrid drivetrain system and perceived quality must be met. Multi-disciplinary and multiphysics optimization methodologies make it possible to design an e-motor for multiple, completely different design requirements simultaneously, thus avoiding a serial development strategy, where a larger number of design iterations are necessary to fulfill all requirements and unfavorable design compromises need to be accepted.
The project described in this paper is focused on multiphysics design of an e-motor for Porsche AG. Altair’s simulation-driven approach supports the development of e-motors using a series of optimization intensive phases building on each other. This technical paper offers insights on how the advanced drivetrain development team at Porsche AG, together with Altair, has approached the challenge of improving the total design balance in e-motor development.

Using Multiphysics to Predict and Prevent EV Battery Fire
Electric vehicles (EV) offer the exciting possibility to meet the world’s transportation demands in an environmentally sustainable way. Mass adoption could help reduce our reliance on fossil fuels, but the lithium-ion (Li-on) batteries that power them still present unique challenges to designers and engineers, primary among them to ensuring safety against battery fire. To achieve vehicle manufacturer’s ambitious adoption goals, it is necessary to improve the safety of Li-on batteries by better understanding all of the complex, interconnected aspects of their behavior across both normal and extreme duty cycles. Altair is focused on developing a comprehensive understanding of automotive battery safety issues which it has named the Altair Battery Designer project. It combines innovative design methods and tools to model and predict mechanical damage phenomena as well as thermal and electro-chemical runaway. Altair has developed an efficient way to calculate mechanical and short-term thermal response to mechanical abuses, providing accurate computational models and engineer-friendly methods to design a better battery.

Accurately Predicting Electric Vehicle Range with an Intelligent Digital Twin
A conversation with Selcuk Sever, Principal Engineer at Switch Mobility, discussing its collaboration with Altair to accurately predict the range of its electric buses. With accurate range prediction, Switch Mobility can give its public transport authority customer confidence that electric buses can meet the requirements of their bus routes.
