Skip to main content
African American woman sitting at a desk using Altair RapidMiner Cloud software.

人工智能 (AI) 和数据分析解决方案

数据不同于企业拥有的任何其他资产。 数据永不磨损,永不流失,并且可以反复使用。 但数据的价值不在于拥有它,而在于如何使用它。 Altair 可为数据驱动的企业提供使用 AI 和数据分析解决方案的能力,从而获得竞争优势并推动实现更高级别的业务成果,最终实现数据驱动型企业。

浏览产品

为每个人赋能以培养数据驱动文化

借助 Altair 的数据分析解决方案,您可以扩展 AI 计划,而无需庞大的数据科学家团队或昂贵的服务。 提高员工技能,使从新手到专家级别的用户都可以试用所需的数据和分析工具来提供数据驱动的见解。

业务团队和分析师

无需编写任何代码即可在整个组织内生成和共享数据驱动的洞察。

数据科学家

专注于高价值的工作,从代码自由到代码友好的选项和协作。 轻松部署和监控模型,以实现长期业务影响。

数据架构师和 IT

转变组织的数据架构并大规模管理复杂的自动化。

Altair® RapidMiner®

我们的数据分析和 AI 平台 Altair RapidMiner 提供全面的端到端解决方案,从数据摄取和建模到运营和可视化。

了解更多

提供正确的数据和高级分析工具

为多元化团队提供成功所需的数据和分析能力的广度和深度。 无论是统一的端到端数据科学解决方案、自助式数据转换或可视化解决方案,还是替代的 SAS 语言环境。

从 PDF、电子表格和报告中提取数据是业务的核心

连接数据库、电子表格、大数据、IoT 等

探索趋势并发现异常

转换数据以适应您的应用

训练和评估 AI 模型,从无代码到代码友好

大规模操作模型

开发实时看板或终端用户应用程序

在云中或边缘实现自动化,增强流程功能

控制终端用户对数据的访问

Altair RapidMiner 在整个分析生命周期中提供广度和深度。

了解更多

克服企业级挑战

不要让 IT 挑战妨碍您的数据分析解决方案。 了解您所需要的可扩展性和部署选项 - 所有这些都不会影响数据的安全性或完整性。

确保安全与管理

通过详细的访问控制来强制实行监督。 轻松与现有的企业用户管理系统集成。

随时部署

灵活的部署模式包括托管的本地、云、或混合型解决方案。

现在和未来的补充工具

发展您的分析生态系统。 将当前的投资与未来的愿景相结合。

通过 AI 加速整个企业创新

解决高影响力的 AI 案例,改变您的业务。 通过增强每个人的能力和提供正确的工具,您可以使用数据和高级分析工具实现无限的目标。

推动收入增长

  • 需求预测
  • 文本挖掘
  • 客户终身价值
  • 下一个最佳行动
  • 客户细分
  • 向上销售和交叉销售

削减成本

  • 预测性维护
  • 供应链优化
  • 流程自动化
  • 产品开发
  • 防止客户流失
  • 自动化数据提取

管理风险

  • 信用记分卡 
  • 质量保证
  • 保修分析
  • 避灾 
  • 法规遵从性
  • 欺诈检测
  • 网络安全  
  • 贸易监测

借助无摩擦 AI,加速企业人工智能 (AI) 应用。

了解更多

特色资源

50 Ways to Impact Your Business with AI

Identifying potentially impactful use cases is one of the most cited roadblocks for organizations seeking to leverage AI in their business. To complicate things further, best practices dictate that you should have a portfolio of use cases ready to experiment with. If finding one is a challenge, developing a whole portfolio of use cases may prove to be very difficult.

In this guide, we'll cover:

  • A wide variety of AI applications for enterprises
  • The challenges that led each business to seek help from AI & machine learning
  • The advanced solutions that were built and deployed to overcome each challenge
  • The documented financial impact experienced by each client
手册

A Leader's Guide to Building a Data-Driven Culture

If you have mountains of data at your fingertips that you're not using, you risk falling behind your competition. But, if you actively work toward becoming a more data-driven organization and closing the pervasive data science skills gap, you can promote internal alignment around how data is used, make a tangible impact with AI, and come out on top. The best time to start optimizing how data is viewed and used at your organization is right now, and in this whitepaper, we're going to walk you through how to do just that.

白皮书

Guide to Using Data Analytics to Prevent Financial Fraud

Financial fraud takes countless forms and involves many different aspects of business including; insurance and government benefit claims, retail returns, credit card purchases, under and misreporting of tax information, and mortgage and consumer loan applications.

Combating fraud requires technologies and business processes that are flexible in their construct, can be understood by all who are involved in fraud prevention, and are agile enough to adapt to new attacks without needing to be rebuilt from scratch. Armed with advanced data analytics, firms and government agencies can identify the subtle sequences and associations in massive amounts of data to identify trends, patterns, anomalies, and exceptions within financial transaction data. Specialists can use this insight to concentrate their attention on the cases that are most likely fraud.

This guide will help you understand the complex environment of financial fraud and how to identify and combat it effectively.

eGuide

Make Machine Learning Work for You

Protecting consumers and enterprises involved in online transactions is just one example of how machine learning (ML) influences our daily lives. In fact, the list of use cases is already long, diverse and growing fast. The reason is clear – ML is a game-changing tool that enables organizations to make better decisions faster. What's more, ML is highly effective at balancing conflicting objectives.

Given the breadth and depth of potential use cases, one thing is clear – more and more people will find themselves working in environments where ML plays a critical role. And thanks to the emergence of low-code and no-code software, ML is no longer the exclusive preserve of programmers, data scientists, and people who paid attention in math class. More of us can, and will, be involved in developing and deploying practical ML solutions.

This eGuide will help you understand the key concepts behind ML, some common applications, and how ML becoming more useful to people at all levels of the modern organization.

eGuide
View All Resources

保持联系

我们能提供什么帮助?

期待您的联系。 请通过以下方式联系我们。

联系我们
careers-cta-pic